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ABSTRACT: Assimilating radar reflectivity into convective-scale NWP models remains a challenging topic in radar data
assimilation. A primary reason is that the reflectivity forward observation operator is highly nonlinear. To address this chal-
lenge, a power transformation function is applied to the WRFModel’s hydrometeor and water vapor mixing ratio variables
in this study. Three 3D variational data assimilation experiments are performed and compared for five high-impact weather
events that occurred in 2019: (i) a control experiment that assimilates reflectivity using the original hydrometeor mixing
ratios as control variables, (ii) an experiment that assimilates reflectivity using power-transformed hydrometeor mixing
ratios as control variables, and (iii) an experiment that assimilates reflectivity and retrieved pseudo–water vapor observa-
tions using power-transformed hydrometeor and water vapor mixing ratios (qy) as control variables. Both qualitative and
quantitative evaluations are performed for 0–3-h forecasts from the five cases. The analysis and forecast performance in
the two experiments with power-transformed mixing ratios is better than the control experiment. Notably, the assimilation
of pseudo–water vapor with power-transformed qy as an additional control variable is found to improve the performance
of the analysis and short-term forecasts for all cases. In addition, the convergence rate of the cost function minimization for
the two experiments that use the power transformation is faster than that of the control experiments.

SIGNIFICANCE STATEMENT: The effective use of radar reflectivity observations in any data assimilation scheme
remains an important research topic because reflectivity observations explicitly include information about hydrome-
teors and also implicitly include information about the distribution of moisture within storms. However, it is difficult to
assimilate reflectivity because the reflectivity forward observation operator is highly nonlinear. This study seeks to
identify a more effective way to assimilate reflectivity into a convective-scale NWP model to improve the accuracy of
predictions of high-impact weather events.

KEYWORDS: Radars/Radar observations; Numerical weather prediction/forecasting; Short-range prediction;
Data assimilation

1. Introduction

Weather radar observations are very important for convec-
tive-scale NWP as they can provide information with suffi-
cient temporal and spatial resolution to resolve convective
storms (Lilly 1990). The assimilation of radar data into NWP
models can greatly improve the analysis and forecasts of con-
vective storms (Gao et al. 1999, 2016; Tong and Xue 2005; Hu
et al. 2006a,b; Stensrud and Gao 2010; Carley 2012; Gao and
Stensrud 2012, and many others). Most weather radars pro-
vide radial velocity and reflectivity observations. Radial veloc-
ity can be straightforwardly assimilated into convective-scale
NWP models because of its linear and simple relationship
with the three components of the model wind field. However,
the assimilation of radar reflectivity into convective-scale
NWP models is much more difficult (Gao and Stensrud 2012).
Because of this, early studies usually adopted relatively simple
or empirical methods for assimilating reflectivity into convective-
scale NWPmodels. For example, complex cloud analysis schemes

use radar reflectivity data directly to retrieve hydrometers and
adjust in-cloud temperature and moisture (Hu et al. 2006a,b).
Although the cloud analysis approach is efficient with a low
computational cost, it can introduce model errors owing to
its reliance on empirical relations between the adjusted vari-
ables and reflectivity.

Another way to assimilate radar reflectivity is to develop an
observation forward operator that converts model-predicted
variables (e.g., hydrometeor mixing ratios) to observed varia-
bles (i.e., radar reflectivity). Many different reflectivity forward
operators have been developed and tested in both variational
and ensemble-based data assimilation approaches (Xiao et al.
2007; Jung et al. 2008; Ryzhkov et al. 2011; Gao and Stensrud
2012; Wang et al. 2013; Wheatley et al. 2015; Zhang 2017; Wang
and Wang 2017; Liu et al. 2019; Wang et al. 2019; Zhang et al.
2021). Although these studies demonstrated promising results,
some challenges remain. Because of strong nonlinearity in the
relationship between reflectivity and model-predicted variables,
typical reflectivity forward operators have minimization difficul-
ties if applied in any variational data assimilation approach.

Sun and Crook (1997) implemented a simple reflectivity
forward operator, in which the relation between reflectivityCorresponding author: Jidong Gao, Jidong.Gao@noaa.gov
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and rain mixing ratio is derived by assuming the Marshall–
Palmer distribution of raindrop size, to assimilate reflectivity
in their four-dimensional variational data assimilation scheme
(4DVAR). They found that, when the background rainwater
mixing ratio was very small, a very large cost function gradi-
ent occurred, resulting in difficulty reaching the minimization
convergence when the simple reflectivity forward operator
was used.

To address the nonlinearity problem of existing reflectivity
forward operators, Carley (2012) assimilated radar reflectivity
data using logarithmic transformations of retrieved hydrome-
teor mixing ratios as the control variables in the Gridpoint
Statistical Interpolation (GSI) hybrid ensemble–3DVAR sys-
tem. Liu et al. (2020) also proposed several treatments for
alleviating nonlinearity issues using the 3DVAR method,
which included using logarithmic mixing ratios as state varia-
bles with a lower limit threshold and background smoothing.
Their results demonstrated that using logarithmic mixing
ratios as control variables created analyses that were more con-
sistent with observations, and that the convergence processes
were faster. However, both studies found using logarithmic mix-
ing ratios as state variables can introduce spurious cells.

Recently, Yang et al. (2020) adopted a nonlinear transfor-
mation function to improve the variational analysis of visibil-
ity and cloud ceiling height, based on NCEP’s Real-Time
Mesoscale Analysis (RTMA) system. This newly proposed
power transformation function can make non-Gaussian varia-
bles more normally distributed. Additionally, the transforma-
tion function can range from linear to logarithmic by varying
a parameter from 1 to 0, respectively. In a more recent study,
the idea of applying a power transformation to control varia-
bles was used for reflectivity data assimilation by treating the
retrieved hydrometeor variables as control variables (Chen
et al. 2021; Li et al. 2022). Results showed that the assimila-
tion of reflectivity with this transformation function gave the
best short-term severe weather forecasts compared to either
no transformation or a logarithmic transformation function.
This approach is promising but has yet to be extensively
explored.

In this study, we further investigate the degree to which the
application of this power transformation function to hydrome-
teor mixing ratios as control variables is useful for convective-
scale NWP. In addition, we apply the power transformation
function to water vapor mixing ratio to test whether the re-
trieved pseudo–water vapor (Lai et al. 2019) can also be effec-
tively assimilated into the system. The efficiency of a data
assimilation scheme is essential for real-time forecasting appli-
cations. Severe convective weather events, which are character-
ized by local, sudden, and short life cycles, require fast and
timely forecasts, early warnings, and the quick delivery of these
forecasts and warnings to the public (Zhao et al. 2021). Thus, a
three-dimensional variational data assimilation method devel-
oped for convective-scale NWP (Gao et al. 2013) is used due to
its low computational cost. However, it is expected that the
overall conclusions drawn using 3DVAR in this study will re-
main valid for other advanced data assimilation methods, such
as 3DEnVAR, 4DVAR, and so on (Caya et al. 2005; Tong and
Xue 2005; Gao and Xue 2008; Sun and Wang 2013; Yussouf

et al. 2013; Johnson et al. 2015), as they have the same issue re-
garding how to effectively deal with highly nonlinear reflectivity
operators. A brief description of this method is provided in the
next section.

The remainder of this work is organized as follows. Section 2
briefly describes the 3DVAR analysis and forecast system imple-
mentation. It also discusses the methodology, including the
3DVAR system, radar forward operators, power transformation
function, and pseudo–water vapor retrieval. The experiment
design is detailed in section 3, followed by a presentation of the
results in section 4. Section 5 concludes with a summary and dis-
cussion of considerations for future work.

2. Methodology

a. The 3DVAR system

The overarching principle of variational data assimilation
techniques is to find the best analysis for NWP by minimizing
a cost function (Lorenc 1986). The following formulation of a
3DVAR cost function was proposed by Gao et al. (2004):

J(x) 5 1
2
(x 2 xb)TB21(x 2 xb)

1
1
2
[H(x) 2 yo]TR21[H(x) 2 yo] 1 Jc(x): (1)

The first term on the right-hand side of the equation measures
the distance between the analysis or control vector x and the
background vector xb, and is weighted by the inverse of the
background error covariance matrix B. The 3DVAR system
assimilates radar radial velocity, reflectivity, and surface observa-
tions. Thus, there are several variables included in the analysis
vector x: the wind components (u, y , and w), the hydrometeor
mixing ratios for rainwater (qr), snow (qs), and hail (qh), potential
temperature (u), and water vapor mixing ratio (qy).

The second term of the cost function is the observation
term, which determines the distance between the analysis vec-
tor x mapped to the observation variables and locations by
the forward observation operator H(x), and the observation
vector yo, and that is weighted by the inverse of the observa-
tion error covariance matrix R. The third term Jc(x) is a pen-
alty term that employs the mass continuity equation as a weak
constraint (Gao et al. 1999, 2004).

To effectively precondition the minimization problem, we
follow Courtier et al. (1994) and Courtier (1997) and define an
alternative control variable v, such that C5

���
B

√
v5 (x2 xb).

This allows the cost function (1) to be changed into an incre-
mental form, such that

Jinc(v) 5
1
2
vTv 1

1
2
(HC 2 d)TR21(HC 2 d) 1 Jc(v), (2)

where H is the linearized version of H and d ; yo 2 H(xb).
The gradient and Hessian of Jinc can also be derived by differ-
entiating (2) with respect to v, yielding

=Jinc 5 (I 1 CTHTR21HC)v 2 CTHTR21d 1 =Jc(v), (3)

where I is the identity matrix. The Hessian then follows as
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=2Jinc 5 I 1 CTHTR21HC 1 =2Jc(v): (4)

The preconditioning in (4) prevents the smallest eigenvalue
from becoming close to zero. This can improve convergence
of minimization algorithms and allows the variational prob-
lem to be solved more efficiently.

b. Radar forward observation operator

The radar forward observation operator H transforms
model state variables (e.g., u, y , qr, qs) in model space to ob-
servational measurements in observation space (e.g., radial
velocity, reflectivity). Both radar radial velocity and reflectiv-
ity are assimilated within the 3DVAR framework in this
study. The details of the radial velocity and reflectivity for-
ward observation operators are described as follows.

Radar radial velocity data are part of the observation vec-
tor yo in Eq. (1). The radar forward observation operator for
radial velocity, which includes the effects of Earth’s curvature,
is written as follows in Doviak and Zrnić (1993):

y r 5
dh
dr

w 1
ds
dr

(u sinf 1 y cosf), (5)

where y r is the projected radial velocity; and u, y , and w are
the zonal, meridional, and vertical components of the wind,
respectively; r is the slant range (ray path distance); h is the
height above the curving Earth’s surface; s is the distance
along Earth’s surface; and u is the azimuth angle of the radar
beam direction.

The forward observation operator for radar reflectivity
(Z, in dBZ) can be written as follows:

Z 5 10 log10(Ze), (6)

where Ze is the equivalent radar reflectivity factor in linear
units (mm6 m23) obtained from the sum of the three simu-
lated hydrometeor species (rainwater, snow, and hail), ac-
cording to the following formulation (Dowell et al. 2011;
Gilmore et al. 2004; Lin et al. 1983):

Ze 5 Ze(qr) 1 Ze(qs) 1 Ze(qh): (7)

In Eq. (7), Ze(qr), Ze(qs), and Ze(qh) represent the equivalent
radar reflectivity factors contributed from rainwater (qr),
snow (qs), and hail (qh), respectively. Based on Smith et al. (1975),
each hydrometeor’s contribution to reflectivity can be calculated
from

Ze(qr) 5 3:63 3 109(rqr)1:75, (8)

Ze(qs) 5 9:80 3 108(rqs)1:75 (dry snow, T # 08C), (9)

Ze(qs) 5 4:26 3 1011(rqs)1:75 (wet snow, T . 08C), (10)

Ze(qh) 5 4:33 3 1010(rqh)1:66, (11)

where r is the air density. The radar reflectivity forward ob-
servation operators mentioned above are highly nonlinear

which may cause a large gradient of the cost function when
background mixing ratios are very small (Sun and Crook 1997;
Liu et al. 2020).

Equations (6)–(11) indicate the reflectivity factor is a func-
tion of all three hydrometeor variables (rainwater, snow,
hail). This leads to the solution being underdetermined (Gao
and Stensrud 2012). To solve this problem, Eq. (7) is further
modified as

Ze 5

Z(qr) Tb . 58C

Z(qs) 1 Z(qh) Tb , 258C

aZ(qr) 1 (1 2 a)[Z(qs) 1 Z(qh)] 258C , Tb , 58C
,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(12)

where a varies linearly between 0 at Tb 5 258C and 1 at
Tb 5 58C, and Tb is the background temperature from the
WRF Model. Here, a priori partitioning of the hydrometeor
variables in Eq. (12) allows the model background tempera-
ture to guide how much of the correction should occur in qr
compared to how much correction should occur in qs and qh
(Gao and Stensrud 2012).

c. Power transformation function

Yang et al. (2020) proposed a nonlinear power transforma-
tion function to improve variational analysis of visibility and
ceiling height. This power transformation function is applied
to the hydrometeor and water vapor mixing ratios (qr, qs, qh, qy)
and is defined as follows:

q̂ 5
(qp 2 1)

p
(0 , p # 1), (13)

where q̂ denotes the power-transformed mixing ratios and p
represents a parameter which is larger than zero and smaller
than or equal to 1. When p equals 1, this equation becomes

q̂ 5 q 2 1, (14)

which is a linear relationship between q and q̂. The nonlinear-
ity of the equation grows as the value of p decreases. When p
approaches zero, this transformation function becomes a natu-
ral logarithm function. Thus, this nonlinear power transforma-
tion allows for a range of possible transformation functions,
including both linear and logarithmic functions at each end of
the parameter range.

Therefore, the equivalent reflectivity factor for rainwater
after the power transformation can be written as follows:

Ze(q̂r) 5 3:63 3 109[r(pq̂r 1 1)1/p]1:75: (15)

In addition, q̂ needs to be greater than 21/p to avoid negative
values of hydrometeor mixing ratios when transforming back
to the standard space. For other hydrometeors, the formula-
tions are similar.

Chen et al. (2021) and Li et al. (2022) examined the perfor-
mance of using power-transformed hydrometeor mixing ratios
as control variables with different p values. Results indicated
that p 5 0.4 yielded the best 1-h reflectivity forecasts. Thus,
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we choose p 5 0.4 in this study to test the power transforma-
tion function.

d. Pseudo–water vapor mixing ratio observations

Our recent studies have found that the assimilation of
pseudo–water vapor, along with radar radial velocity and re-
flectivity, improved the analyses and forecasts of convective
storms (Carlin et al. 2017; Lai et al. 2019). In this current
study, the pseudo–water vapor mixing ratio observations are
produced based on vertically integrated liquid water, which is
derived from reflectivity observations (Lai et al. 2019). The
detailed procedure can be found in that paper. To improve
the efficiency of minimization, the power transformation func-
tion discussed in section 2c is also applied to the pseudo–
water vapor as a control variable.

3. Experimental design

To test the impact of the power transformation function on
the assimilation of radar data within the 3DVAR framework,
five real-data cases with severe weather events (17, 20, 22, 23,
and 28 May 2019) are selected from the 2019 Warn-on-Forecast
(WoF) spring experiments (Clark et al. 2020). The forecast
model employed in this study is the WRF-ARW Model version
3.7.1, which uses the following physics configuration: the Thomp-
son microphysics scheme (Thompson et al. 2008), the Yonsei
University (YSU) planetary boundary layer scheme (Hong et al.
2006), the Rapid Radiative Transfer Model for Global circu-
lation models (RRTMG) shortwave and longwave schemes
(Iacono et al. 2008), and the unified Noah land surface model
(Tewari et al. 2004). The experiment domains for all the cases
in this study have 600 3 600 grid points in the horizontal with
a grid spacing of 1.5 km, and 51 vertical levels. The model top
height is set to 50 hPa.

The flowchart of the cycled data assimilation and forecast
experiments is shown in Fig. 1. For all five cases, the severe
weather events occurred primarily between 1800 and 2300 UTC.
The experiments are started at 1900 UTC and extend to 2300 UTC
with the 3-km High-Resolution Rapid Refresh (HRRR) fore-
cast fields providing the initial background for the data assimi-
lation cycles and the lateral boundary conditions for forecasts.
For each case, the radar observations downloaded from the
NEXRAD Level-II data repository at the National Centers
for Environmental Information (https://www.ncdc.noaa.gov/
nexradinv/) are assimilated every 15 min during the 4-h cycling
period, and the conventional observations (e.g., soundings,
surface stations) are assimilated hourly at 1900, 2000, 2100,
2200, and 2300 UTC. Starting from 2000 UTC, 3-h forecasts
are launched hourly until 2300 UTC. The gridded Multi-Radar
Multi-Sensor (MRMS) composite radar reflectivity dataset
(Smith et al. 2016) and the National Centers for Environmen-
tal Prediction (NCEP) Stage-IV hourly precipitation dataset
(Du 2011) are used to verify the performance of the reflectiv-
ity and precipitation forecasts in this study.

Three types of experiments, labeled Q, PQ, and PQ_Pqv, are
performed for each case. Detailed descriptions of the experiments
are provided in Table 1. Radial velocity is assimilated the same
way in all experiments. Experiment Q serves as the control exper-
iment by assimilating radar reflectivity using the original hydro-
meteor variables as part of the control variables, but without
assimilating pseudo–water vapor. Experiment PQ uses the
power-transformed hydrometeors as part of the control varia-
bles but without assimilating water vapor. Finally, experiment
PQ_Pqv uses power-transformed hydrometeors and pseudo–
water vapor as control variables, with the assimilation of both radar
data and pseudo–water vapor observations. These three experi-
ments are compared to investigate the impact of the power trans-
formation function on short-term convective-scale severe weather
forecasts within the variational data assimilation framework.

FIG. 1. Illustration of cycled data assimilation and forecast experiments. “Obs” represents the assimilated observa-
tions including conventional observations (Conv) and radar observations (Rad). The yellow arrows show the times
when the observations are assimilated. The radar observations are assimilated every 15 min while the conventional
observations are assimilated every hour.

TABLE 1. Description of experiments.

Expt name Water-related variables Description

Q q Expt with qr, qs, and qh as control variables
PQ Pq Expt with power-transformed qr, qs, and qh as control variables
PQ_Pqv Pq, Pqv Expt with power-transformed qr, qs, qh, and qy as control variables
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Two severe weather cases are selected for more detailed
analysis in the next section: the 22 May 2019 tornadic super-
cell storms in northeastern Oklahoma (the worst-performing
case denoted as Case 1, Fig. 2a) and the 28 May 2019 tornado
outbreak over the border of eastern Kansas and Missouri
(one of the best-performing cases denoted as Case 2, Fig. 2b).
The geographical center of the model simulation domains for
these two cases are at 37.098N, 95.608W and 38.428N, 94.758W,
respectively.

4. Results

a. 22 May 2019 case

The first case selected for this study occurred on 22 May 2019.
Environmental conditions were favorable for the develop-
ment of tornadoes and severe thunderstorms across northeast
Oklahoma and Missouri. Early in the afternoon, isolated in-
tense thunderstorms existed in southwest and central Oklahoma.
Thunderstorms developed across northeast Oklahoma, southeast
Kansas, and central and southwest Missouri that produced
several tornadoes and widespread large hail (3 in. in diameter
based on local NWS reports). The storms then spread north-
eastward through the evening and persisted into the early
overnight period before weakening. In all, 47 tornadoes were
reported ranging from EF0 to EF3, with 16 of them occurring
in Oklahoma. The simulation domain for 22 May 2019 case
includes most of Kansas, Oklahoma, Arkansas, and Missouri
(Fig. 2a).

The analysis and forecast composite reflectivity fields from
Q, PQ, and PQ_Pqv for the 3-h forecast initiated at 2300 UTC
and the corresponding observed composite reflectivity fields
are shown in Fig. 3. The convective cells within the simulation
domain are divided into three main regions (labeled A, B, and
C) to better illustrate the comparisons. At the analysis time
(valid at 2300 UTC), the reflectivity patterns of all three

experiments are similar to the observed composite reflectivity
fields (Fig. 3a) in terms of storm locations. However, the storm
intensity differs between each experiment. The storm cells in
region A from PQ and PQ_Pqv (Figs. 3c,d) are stronger than
that of Q (Fig. 3b), and are more consistent with the observations
(Fig. 3a). The analyzed reflectivity field for PQ_Pqv (Fig. 3d) in-
dicates that a cluster of several convective cells in region B is
more vigorous than that for Q and PQ (Figs. 3b,c, respectively),
also in better agreement with the observed reflectivity fields.
Moreover, the weak cell in region C is closest to the observations
for PQ_Pqv, in terms of pattern and intensity.

Although using power-transformed hydrometeor and water
vapor mixing ratios as control variables produces more consis-
tent analyses of reflectivity fields, the benefits do not persist in
the forecasts, especially after one hour. At 1 h into the forecast
(0000 UTC), the west-most cells in region B, and the weak cell
in region C, decay very quickly for Q and PQ (Figs. 3f,g),
though they are relatively better maintained for PQ_Pqv. The
cell in region C completely dissipates for Q and PQ, but still ex-
ists for PQ_Pqv (though weaker than that observed, Fig. 3h).
By 3 h, the forecasts for all three experiments are quite similar
(Figs. 3n–p).

To further evaluate the usefulness of power transformation
functions applied to hydrometeor and water vapor mixing
ratios used as control variables, the maximum 2–5-km updraft hel-
icity (UH) swaths for the 0–3-h forecasts initiated at 2300 UTC
are overlaid with the Storm Prediction Center (SPC) storm re-
ports in the simulation domain (Fig. 4). From the forecast be-
ginning at 2300 UTC, the UH tracks for all three experiments
(Figs. 4a–c) are similar but miss the supercells in northeast
Oklahoma, which produced severe weather including torna-
does and hail reports. For the storm cells on the border of
Missouri and Illinois, there is a southward bias for all experi-
ments (Figs. 4a–c). However, the predicted UH tracks over
the Oklahoma/Missouri border are stronger for PQ_Pqv
(Fig. 4c) compared to Q (Fig. 4a) and PQ (Fig. 4b). Moreover,

FIG. 2. The simulation domain and locations of the radar sites for (a) 22 May 2019 and (b) 28 May 2019. The red
triangles, green rhombuses, and blue triangles indicate the observed tornadoes, hail, and wind events from Storm
Prediction Center (SPC) storm reports, respectively.
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the mesoscale convective systems in northern Missouri for
PQ_Pqv generate stronger UH tracks than in Q and PQ.

Figure 5 presents the 3-h accumulated precipitation forecasts
initiated at 2300 UTC for Q, PQ, and PQ_Pqv. All experiments
show similar precipitation forecast patterns for areas located on
the border of Oklahoma and Kansas, and the border of Missouri
and Kansas. The precipitation forecast in west-central Missouri
for PQ_Pqv (red circle in Fig. 5d) is more consistent with the ob-
servations (Fig. 5a) in both intensity and areal coverage compared
to Q (Fig. 5b) and PQ (Fig. 5c). However, the precipitation in-
tensity is overestimated for PQ_Pqv in the southeast corner of
Kansas. PQ_Pqv captures the weak rainfall near the boundary
of Texas and Oklahoma, while both Q and PQ miss it.

Performance diagrams (Roebber 2009) are plotted to quantify
the overall performance of the analysis and forecast resulting
from the use of different control variables. The probability of

detection (POD), bias, critical success index (CSI) and false alarm
ratio (FAR) or its equivalent, success ratio (SR5 12 FAR) are
all included in the performance diagrams. The performance
diagrams for the 3-h forecasts initiated at 2300 UTC for 20-, 30-,
and 40-dBZ thresholds are shown in Fig. 6. The closer the values
of POD, CSI, and SR are to unity, the better the forecast is.
Therefore, the upper right corner of the diagram indicates a per-
fect forecast. At the analysis time, although the POD value of
PQ and PQ_Pqv is slightly lower than that of Q at the threshold
of 20 dBZ (Fig. 6a), they are much higher than that of Q at the
30- and 40-dBZ thresholds. PQ and PQ_Pqv produce higher
CSI and SR at all reflectivity thresholds indicating improvement
of the analysis when using power-transformed control variables
(Fig. 6). Additionally, PQ_Pqv outperforms PQ with higher
SR and CSI values at the 30- and 40-dBZ thresholds at anal-
ysis time (Figs. 6b,c). It is found that Q performs better than

FIG. 3. (first column) The observed composite reflectivity and corresponding 3-h forecasts initiated at 2300 UTC
22 May 2019 from experiments (second column) Q, (third column) PQ, and (fourth column) PQ_Pqv. Plots are shown
for the analysis time at (a)–(d) 2300 UTC, (e)–(h) the 1-h forecast valid at 0000 UTC, (i)–(l) 2-h forecast valid at
0100 UTC, and (m)–(p) 3-h forecast valid at 0200 UTC.
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PQ, but PQ_Pqv outperforms both Q and PQ at the 1-h
forecast at all thresholds. For 2- and 3-h forecasts, the re-
sults are a little complicated. PQ_Pqv outperforms both Q
and PQ at the 3-h forecast in terms of POD and CSI at all
thresholds, and at the 2-h forecast in terms of POD at 20
and 30 dBZ. All three experiments exhibit similar perfor-
mance for the 40-dBZ threshold at the 2- and 3-h forecasts.
Generally, PQ_Pqv produces the best performance for the
entire forecast period with the highest values of POD, SR,
and CSI, especially at the 1-h forecast.

To compare the convergence rates of Q, PQ, and PQ_Pqv,
the total and separate observational (i.e., radial velocity and
reflectivity) cost functions normalized by their respective ini-
tial values are calculated for the 1900 UTC 22 May 2019 anal-
ysis as an example (Fig. 7). It is demonstrated that PQ and
PQ_Pqv have faster convergence rates than Q during the min-
imization process with smaller cost function values, especially
for the total and radial velocity cost functions (Figs. 7a,b). Be-
cause of the reduction of the nonlinearity of the cost function,
the overall balance among different control variables during
the minimization process becomes better and the analysis for
winds improves significantly (Chen et al. 2021). For the reflec-
tivity cost functions (Fig. 7c), all three experiments exhibit
very similar convergence rates. This indicates that the use of a
power transformation of hydrometeors as control variables
has little impact on the convergence of the reflectivity cost
function but does have an impact on the overall convergence
of the minimization process. Note some small spikes exist in
the cost function during the minimization process which may
be caused by the complicated nonlinear problem in the cost
function (Navon and Legler 1987; Li et al. 1994; Gao et al.
2001).

b. 28 May 2019 case

The second case occurred on 28 May 2019. Initially that af-
ternoon, there was a slow-moving front draped from north-
eastern Kansas into northern Missouri. Storms formed and
moved northeastward along this front. Scattered supercells
also developed along the dryline from west-central Oklahoma

northward into central Kansas, which favored the develop-
ment of very large hail and tornadoes. The ongoing elevated
thunderstorms persisted for several hours, and isolated severe
storms formed and moved eastward across west central
Kansas through the evening. These storms produced several
tornadoes. Eventually, an EF4 tornado formed with estimated
maximum winds of 170 mph. In all, 35 tornadoes were re-
ported ranging from EF0 to EF4, with 21 tornadoes occurring
in Kansas. The simulation domain of the experiments for
28 May 2019 case includes most of Oklahoma, Kansas, Missouri,
Arkansas, Iowa, and Illinois (Fig. 2b).

Similar to the first case, Q, PQ, and PQ_Pqv are compared
to examine the usefulness of applying the power transforma-
tion function to different control variables. The analyzed and
forecast composite reflectivity fields for the 3-h forecasts
initiated at 2200 UTC for the three experiments Q, PQ, and
PQ_Pqv and the corresponding observed composite reflectiv-
ity fields are plotted (Fig. 8). Like in Case 1, the three main
convection regions from north to south are marked and labeled
as A, B, and C to better illustrate the comparisons (Fig. 8a). At
the analysis time (valid at 2200 UTC), the reflectivity patterns
of all three experiments are similar to the observed composite
reflectivity in term of storm locations. However, the storm in-
tensity differs in each experiment. The intensity of the cell in
region A for PQ and PQ_Pqv (Figs. 8c,d) is closer to the obser-
vations compared with that of Q (Fig. 8b), especially on the bor-
der of Iowa and Missouri. The analyzed reflectivity fields for
PQ (Fig. 8c) and PQ_Pqv (Fig. 8d) indicate that the convective
cells in region B for both experiments are more vigorous than
that for Q (Fig. 8b), in better agreement with the observed
reflectivity fields. Moreover, a cluster of several storm cells in
region C from PQ and PQ_Pqv are also stronger compared to
Q, which is more consistent with the observations. A weak spu-
rious cell is produced in Q in southeastern Kansas, which is
reduced in both PQ and PQ_Pqv.

At the 1-h forecast (valid at 2300 UTC), a convective cell is
predicted in region A for both PQ and PQ_Pqv (Figs. 8g,h),
which is absent from Q (Fig. 8f). In addition, there are several
storm cells predicted in the right and bottom-left portions of

FIG. 4. The maximum 2–5-km updraft helicity track swaths (m2 s22): (a) Q, (b) PQ, and (c) PQ_Pqv for the 0–3-h forecasts initiated at
2300 UTC 22 May 2019. The green rhombuses and red and blue triangles represent hail, tornadoes, and damaging winds from SPC reports,
respectively.
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region C for PQ_Pqv, which were not well-predicted in Q and
PQ. By the 2-h forecast, the storm cell in region A is margin-
ally predicted in both PQ and PQ_Pqv, but not for Q. How-
ever, the convective cells in the eastern portion of region C
dissipate for all experiments (Fig. 8l). At 3 h into the forecast,
all three forecasts look quite similar (Fig. 8p). Overall, the Q
and PQ experiments exhibit very similar forecast perfor-
mance based on the composite reflectivity fields. PQ_Pqv
gives the best forecast performance, especially for the 1- and
2-h forecasts.

The maximum 2–5-km UH track swaths for the 0–3-h fore-
casts initiated at 2200 UTC are also calculated (Fig. 9). Similar
to Case 1, the patterns of UH tracks are similar for all the ex-
periments from the forecast initialized at 2200 UTC (Figs. 9a–c).
In addition, the three experiments all exhibit an obvious north-
ward bias, especially for the storm tracks in central and northern
Oklahoma and central Kansas. However, a few distinguished
discrepancies exist among the three experiments. The predicted
UH swaths over the Kansas–Missouri and Kansas–Nebraska

border are stronger and more consistent with the tornado re-
ports for PQ_Pqv (Fig. 9c), with smaller phase errors and stron-
ger intensities, compared with that of Q (Fig. 9a) and PQ
(Fig. 9b). Moreover, the intensities of the UH tracks for PQ_Pqv
are stronger than that of Q and PQ in central and northern
Oklahoma. This further demonstrates the usefulness of applying
a power transformation to hydrometeors used as control varia-
bles and the additional assimilation of pseudo–water vapor.

Figure 10 shows the 3-h accumulated precipitation forecasts
initiated at 2200 UTC. The precipitation near the boundary of
Missouri and Iowa are underpredicted in all three experiments
with clear westward biases although PQ_Pqv has the best fore-
cast in terms of areal coverage. At the border of Kansas and
Nebraska, the forecast for PQ_Pqv (Fig. 10d) matches the ob-
servations better than that of Q (Fig. 10b) and PQ (Fig. 10c).
Moreover, the two narrow precipitation bands in central Okla-
homa are well captured in PQ_Pqv, which are underpredicted
in Q and PQ compared with the observations (Fig. 10a). In gen-
eral, PQ_Pqv shows better precipitation forecasts performance.

FIG. 5. The 3-h accumulated precipitation (mm) for NCEP Stage-IV (a) observations, (b) Q, (c) PQ, and (d) PQ_Pqv,
initiated at 2300 UTC 22 May 2019. The red circle in (d) highlights the precipitation area in west-central Missouri.
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The performance diagrams for the 3-h forecasts initiated at
2200 UTC for 20-, 30-, and 40-dBZ thresholds are also plotted
for this case (Fig. 11). At the analysis time, both PQ and
PQ_Pqv have lower bias and higher CSI than that of Q at all
thresholds, indicating evident improvement of the analysis by
using the power transformation function. For the forecasts,
PQ_Pqv outperforms both Q and PQ for the entire period,
exhibiting the highest values of POD, SR and CSI, especially
at the 1-h forecast. Both Q and PQ exhibit similar perfor-
mance at the 30- and 40-dBZ thresholds (Figs. 11b,c). For the
20-dBZ threshold, PQ outperforms Q with slightly higher SR
and CSI values.

The total and individual cost functions for this case are also
presented (Fig. 12). It is shown that PQ and PQ_Pqv have
faster convergence rates than Q, especially for the parts corre-
sponding to radial velocity (Fig. 12b). For the normalized to-
tal cost function (Fig. 12a), Q converges faster at the first two
iteration steps and PQ and PQ_Pqv converge faster for the

rest of iterations. For reflectivity (Fig. 12c), Q has faster con-
vergence rates at the first four iteration steps. Overall, how-
ever, PQ and PQ_Pqv exhibit very similar convergence rates,
which reach the smallest cost function values and level off
more quickly compared with Q.

c. Quantitative verification on forecast performance for
all five cases

To more fully investigate the impact of assimilating power-
transformed mixing ratios, the fractions skill scores (FSS;
Roberts and Lean 2008) aggregated over all five cases are cal-
culated at every hour for the 3-h forecasts initiated from 2000
to 2300 UTC with thresholds of 20 and 40 dBZ for Q, PQ,
and PQ_Pqv (Fig. 13). Only areas where the observed reflec-
tivity is greater than 0 dBZ are included in the calculation.
At the analysis time, the averaged FSS values for PQ and
PQ_Pqv are much higher than that for Q for all thresholds,
which indicates that using power-transformed mixing ratios as

FIG. 7. The normalized (left) total, (center) radial velocity, and (right) reflectivity cost functions for Q, PQ, and PQ_Pqv for the analysis at
1900 UTC 22 May 2019.

FIG. 6. Performance diagrams for the 3-h forecasts of composite reflectivity beginning at 2300 UTC 22 May 2019 for (a) 20-, (b) 30-, and
(c) 40-dBZ thresholds. The black curves represent the critical success index (CSI), and the diagonal gray lines represent the bias. The num-
ber in the dots is the forecast length (“0” represents 0-h forecast or analysis, “1” represents 1-h forecast … etc.).
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control variables greatly improves the analysis. Additionally,
PQ_Pqv outperforms PQ with higher FSS values at the analy-
sis time. Although the power transformation of hydrometeor
mixing ratios is beneficial for the analysis, its impact on the
prediction is much smaller. The FSS values for the entire 3-h
forecast are quite similar for Q and PQ, except for the 1-h
forecast at the 20-dBZ threshold (Fig. 13a). However, the av-
eraged FSSs of PQ_Pqv remain superior during the entire
forecast period compared to Q and PQ. This indicates the
positive impact of assimilating pseudo–water vapor on the
short-term severe weather forecasts. In general, applying
power transformations to the hydrometeor and water vapor
mixing ratios provides the best forecast performance for the

five cases, which is consistent with the forecasted composite
reflectivity fields analyzed in the above two individual case
studies.

Given that the relative performance of each experiment
may be different between the five cases, it is useful to investi-
gate variability among the five cases. The performance dia-
gram for 3-h composite reflectivity forecasts shows that the
20 May 2019 case is the best-performing case in terms of CSI,
POD, and SR for both the 20- and 40-dBZ thresholds, while
the 28 May 2019 case has the least biases (Fig. 14). On the
other hand, the 22 May 2019 case is the worst-performing
case based on SR and CSI, while the 17 May 2019 case is the
worst-performing case in terms of POD for both thresholds.

FIG. 8. As in Fig. 3, but initiated at 2200 UTC 28 May 2019.
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Score metrics for all real cases indicate PQ_Pqv has the best
3-h forecast performance, except for the 17 May 2019 case for
the 20-dBZ threshold and the 23 May 2019 case for the
40-dBZ threshold. In addition, the forecast skill of all cases

exhibits more variability at the 40-dBZ threshold than at the
lower 20-dBZ threshold (Fig. 14a versus Fig. 14b).

To quantitatively evaluate the predictive skill for precipi-
tation using different control variables, FSS values of 1-h

FIG. 9. As in Fig. 4, but initiated at 2200 UTC 28 May 2019.

FIG. 10. As in Fig. 5, but initiated at 2200 UTC 28 May 2019.
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accumulated precipitation for Q, PQ, and PQ_Pqv averaged
over all five real data cases with different thresholds (1.0, 2.5,
5.0, and 10.0 mm) are also calculated (Fig. 15). The precipita-
tion forecasts are verified against the NCEP Stage-IV precipi-
tation dataset (Du 2011). For the 0–1-h forecast (Fig. 15a),
PQ and PQ_Pqv have relatively higher scores for all thresh-
olds than Q. Moreover, PQ_Pqv outperforms PQ with the
highest FSS values. For the 1–2-h forecast (Fig. 15b), Q and
PQ show similar FSS values for all thresholds, while PQ_Pqv
presents slightly higher scores at the 1.0-, 2.5- and 5-mm
thresholds. By the 2–3-h forecast (Fig. 15c), all three experi-
ments show very similar FSS values. However, PQ_Pqv pro-
duces slightly lower scores compared with Q and PQ at the
5- and 10-mm thresholds. In summary, using power-transformed
hydrometeor mixing ratios as control variables exhibits better
quantitative precipitation prediction forecast (QPF) skill, es-
pecially during the 0–1-h forecast. Additionally, this improve-
ment is more obvious when using both power-transformed
hydrometeor and water vapor mixing ratios as control
variables.

5. Conclusions

In this study, the impact of using power-transformed hydro-
meteor and water vapor mixing ratios as control variables on
short-term convective-scale forecasts is tested within the
3DVAR system developed for the NSSL WoF project (Gao
et al. 2013). Five severe weather cases of 17, 20, 22, 23, and
28 May 2019 are tested to investigate whether the above strat-
egy can help improve the efficiency and accuracy of radar re-
flectivity DA and convective-scale short-term severe weather
forecasts.

Three experiments}Q, PQ, and PQ_Pqv}are compared
to test the impact of the power transformation function ap-
plied to water-related mixing ratios as control variables on
short-term severe weather forecasts. Detailed analyses of two
of the real data cases is performed. At the analysis time, the
composite reflectivity (and by proxy the storm intensity) dif-
fers for each experiment. Convective cells in PQ and PQ_Pqv
which use the power transformation function are stronger
compared with Q, which does not use the power transforma-
tion function, and are in better agreement with the observed

FIG. 11. As in Fig. 6, but initiated at 2200 UTC 28 May 2019.

FIG. 12. As in Fig. 7, but for 28 May 2019.
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composite reflectivity. In addition, some spurious cells pro-
duced in Q for two cases are comparatively reduced in PQ
and PQ_Pqv. For the 3-h forecasts, PQ_Pqv, which uses the
power-transform function for both hydrometeors and water
vapor as control variables, gives the best forecast, especially
during the first hour of the forecast. The UH swaths for the
3-h forecasts show that the forecast UH tracks are similar for
all three experiments. However, the predicted UH tracks in
some regions are more consistent with the observations for
PQ_Pqv with smaller phase errors and stronger intensity

compared with the other two experiments. The performance
diagrams represent the overall performance of the analysis
and forecast. At the analysis time, PQ produces higher CSI
and SR for reflectivity compared to Q at all thresholds. For
the 1–3-h forecasts, Q and PQ exhibit similar performance
for most thresholds. PQ_Pqv outperforms both experiments for
the entire forecast period. The individual (i.e., radial velocity
and reflectivity) and total cost functions are normalized to
compare the convergence rates. Both PQ and PQ_Pqv have
faster convergence rates than Q, with smaller cost function

FIG. 13. Fractional skill scores of the 0–3-h composite reflectivity forecasts for (a) 20- and (b) 40-dBZ thresholds
within the entire forecast cycle aggregated over all five cases. The output frequency is 15 min.

FIG. 14. Performance diagrams for 3-h composite reflectivity forecasts for each case and experiment relative to
MRMS composite reflectivity observations at thresholds of (left) 20 and (right) 40 dBZ with a neighborhood radius of
12 km. Red, green, and blue colors denote the experiments Q, PQ, and PQ_Pqv, respectively.
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values during most of the minimization process, indicating the
higher efficiency achieved by using power-transformed control
variables.

Quantitative verification over all five cases indicates that both
PQ and PQ_Pqv outperform Q with higher FSS scores at analy-
sis time. More broadly, PQ_Pqv has the highest FSS values for
both reflectivity and QPF compared with Q and PQ at most
forecast times, indicating the positive impact of additionally ap-
plying the power transformation to water vapor mixing ratios
and the assimilation of pseudo–water vapor observations.

In the future, more cases will be tested to see if the strate-
gies explored in this study are representative. Furthermore,
the power transformation function can be used in a hybrid
ensemble or hybrid ensemble and variational system. The
ensemble information may help make the analysis more bal-
anced among different model variables and may also further
improve short-term severe weather analyses and forecasts.
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